login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123752 a(n) = 7*a(n-2), a(0) = 1, a(1) = 2. 1
1, 2, 7, 14, 49, 98, 343, 686, 2401, 4802, 16807, 33614, 117649, 235298, 823543, 1647086, 5764801, 11529602, 40353607, 80707214, 282475249, 564950498, 1977326743, 3954653486, 13841287201, 27682574402, 96889010407, 193778020814 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The first 2n terms are the divisors of 2 * 7^(n - 1). - Alonso del Arte, Jul 14 2016

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,7).

FORMULA

a(n) = 7^(n/2)*(7*(1+(-1)^n) + 2*sqrt(7)*(1-(-1)^n))/14.

From R. J. Mathar, Jun 18 2008: (Start)

O.g.f.: (1 + 2*x)/(1 - 7*x^2).

a(2n) = A000420(n). a(2n+1) = 2*A000420(n). (End)

a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011

E.g.f.: cosh(sqrt(7)*x) + 2*sinh(sqrt(7)*x)/sqrt(7). - G. C. Greubel, Aug 10 2019

MAPLE

a[0]:=1: a[1]:=2: for n from 2 to 30 do a[n]:=7*a[n-2] od: seq(a[n], n=0..30);

MATHEMATICA

LinearRecurrence[{0, 7}, {1, 2}, 30] (* Harvey P. Dale, Mar 21 2013 *)

halfMax = 13; Divisors[2 * 7^halfMax] (* Alonso del Arte, Jul 18 2016 *)

PROG

(MAGMA) [n le 2 select n else 7*Self(n-2): n in [1..30]]; //Vincenzo Librandi, Jul 25 2016

(PARI) a(n)=if(n%2, 2, 1)*7^(n\2) \\ Charles R Greathouse IV, Jul 25 2016

(Sage) [7^(n/2)*(7*(1+(-1)^n) + 2*sqrt(7)*(1-(-1)^n))/14 for n in (0..30)] # G. C. Greubel, Aug 10 2019

(GAP) a:=[1, 2];; for n in [3..30] do a[n]:=7*a[n-2]; od; a; # G. C. Greubel, Aug 10 2019

CROSSREFS

Cf. A018592.

Sequence in context: A128882 A018281 A018592 * A192507 A018622 A018668

Adjacent sequences:  A123749 A123750 A123751 * A123753 A123754 A123755

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula and Gary W. Adamson, Nov 15 2006

EXTENSIONS

Edited by N. J. A. Sloane, Nov 29 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 14:22 EDT 2022. Contains 356215 sequences. (Running on oeis4.)