login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of (1 - x)^n*b(x/(1 - x),n), where b(x,n) is the Morgan-Voyce polynomial related to A085478.
13

%I #32 Jul 16 2021 01:36:58

%S 1,1,1,1,-1,1,3,-4,1,1,6,-9,3,1,10,-15,3,3,-1,1,15,-20,-6,18,-8,1,1,

%T 21,-21,-35,60,-30,5,1,28,-14,-98,145,-70,5,5,-1,1,36,6,-210,279,-100,

%U -45,45,-12,1,1,45,45,-384,441,-21,-280,210,-63,7,1,55,110

%N Triangle of coefficients of (1 - x)^n*b(x/(1 - x),n), where b(x,n) is the Morgan-Voyce polynomial related to A085478.

%C The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A085478(n,j)*x^j*(1 - x)^(n - j).

%H G. C. Greubel, <a href="/A123019/b123019.txt">Rows n = 0..50 of the irregular triangle, flattened</a>

%H Thomas Koshy, <a href="https://doi.org/10.1002/9781118033067.ch41">Morgan-Voyce Polynomials</a>, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001, pp. 480-495.

%H M. N. S. Swamy, <a href="https://www.fq.math.ca/Scanned/38-1/swamy2.pdf">Rising Diagonal Polynomials Associated with Morgan-Voyce Polynomials</a>, The Fibonacci Quarterly Vol. 38 (2000), 61-70.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Morgan-VoycePolynomials.html">Morgan-Voyce Polynomials</a>

%F G.f.: (1 - (1 - x)*y)/(1 + (x - 2)*y + (x - 1)^2*y^2). - _Vladeta Jovovic_, Dec 14 2009

%F From _Franck Maminirina Ramaharo_, Oct 10 2018: (Start)

%F Row n = coefficients in the expansion of (1/(2*sqrt((4 - 3*x)*x)))*((sqrt((4 - 3*x)*x) + x)*((2 - x + sqrt((4 - 3*x)*x))/2)^n + (sqrt((4 - 3*x)*x) - x)*((2 - x - sqrt((4 - 3*x)*x))/2)^n).

%F E.g.f.: (1/(2*sqrt((4 - 3*x)*x)))*((sqrt((4 - 3*x)*x) + x)*exp(y*(2 - x + sqrt((4 - 3*x)*x))/2) + (sqrt((4 - 3*x)*x) - x)*exp(y*(2 - x - sqrt((4 - 3*x)*x))/2)).

%F T(n,1) = A000217(n-1). (End)

%e Triangle begins:

%e 1;

%e 1;

%e 1, 1, -1;

%e 1, 3, -4, 1;

%e 1, 6, -9, 3;

%e 1, 10, -15, 3, 3, -1;

%e 1, 15, -20, -6, 18, -8, 1;

%e 1, 21, -21, -35, 60, -30, 5;

%e 1, 28, -14, -98, 145, -70, 5, 5, -1;

%e 1, 36, 6, -210, 279, -100, -45, 45, -12, 1;

%e 1, 45, 45, -384, 441, -21, -280, 210, -63, 7;

%e 1, 55, 110, -627, 561, 385, -973, 665, -189, 7, 7, -1;

%e ... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 09 2018

%t Table[CoefficientList[Sum[Binomial[n+k, n-k]*x^k*(1-x)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten

%o (Maxima) A085478(n, k) := binomial(n + k, 2*k)$

%o P(x, n) := expand(sum(A085478(n, j)*x^j*(1 - x)^(n - j),j,0,n))$

%o T(n, k) := ratcoef(P(x, n), x, k)$

%o tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x))); /* _Franck Maminirina Ramaharo_, Oct 09 2018 */

%o (Sage)

%o def p(n,x): return sum( binomial(n+j, 2*j)*x^j*(1-x)^(n-j) for j in (0..n) )

%o def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)

%o flatten([T(n) for n in (0..12)]) # _G. C. Greubel_, Jul 15 2021

%Y Cf. A078812, A085478.

%Y Cf. A122753, A123018, A123021, A123027, A123199, A123202, A123217, A123221.

%K sign,tabf

%O 0,7

%A _Roger L. Bagula_ and _Gary W. Adamson_, Sep 24 2006

%E Edited, new name, and offset corrected by _Franck Maminirina Ramaharo_, Oct 09 2018