login
A122732
3-almost primes that are the sum of 2 positive cubes. Sums of 2 positive cubes, with the sums having exactly 3 prime divisors counted with multiplicity.
1
28, 370, 539, 637, 730, 854, 1001, 1358, 1547, 1729, 2198, 2261, 3059, 3887, 3925, 4075, 4123, 4706, 4825, 4921, 5038, 5957, 6293, 6886, 6923, 7075, 7163, 7202, 7657, 8029, 8729, 9262, 9269, 9325, 9331, 10745, 10955, 11458, 12175, 12383, 12845
OFFSET
1,1
COMMENTS
3-almost prime analog of A085366 Semiprimes that are the sum of two positive cubes. The sum of two positive cubes cannot be prime.
LINKS
FORMULA
A003325 INTERSECTION A014612. {x = a^3 + b^3 for positive integers a, b, such that A001222(x) = 3}.
EXAMPLE
a(1) = 28 = 2^2 * 7 = 1^3 + 3^3.
a(2) = 370 = 2 * 5 * 37 = 3^3 + 7^3.
a(3) = 539 = 7^2 * 11 = 2^3 + 8^3.
a(4) = 637 = 7^2 * 13 = 5^3 + 8^3.
a(5) = 730 = 2 * 5 * 73 = 1^3 + 9^3.
a(6) = 854 = 2 * 7 * 61 = 5^3 + 9^3.
a(7) = 1001 = 7 * 11 * 13 = 1^3 + 10^3.
PROG
(PARI) is(n)=bigomega(n)==3 && #select(v->min(v[1], v[2])>0, thue('x^3+1, n))>0 \\ Charles R Greathouse IV, Feb 05 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Sep 23 2006
EXTENSIONS
More terms from R. J. Mathar, Jan 27 2009
STATUS
approved