login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122725
a(n) = A000670(n)^2.
2
1, 1, 9, 169, 5625, 292681, 21930489, 2236627849, 297935847225, 50229268482121, 10454564139438969, 2632936466960600329, 789136169944454084025, 277579719258755165321161, 113238180214596650771616249, 53030348046942317338336489609, 28256184698070300360908567636025
OFFSET
0,3
COMMENTS
This is also the number of possible positions of n intervals on a line having a common non-punctual intersection. Proof: Let us denoted each interval Ai (1 <= i <= n) by the string AiAi. Then the set of all such relative positions is given by the S-language [A1 ⊗ A2 ... ⊗ An]^2. The cardinality of $A1 ⊗ A2 ... ⊗ An$ is given by A000670. - Sylviane R. Schwer (schwer(AT)lipn.univ-paris13.fr), Nov 26 2007
FORMULA
a(n) = sum(sum((k*l)^n/2^(k+l+2),k=0..infinity),l=0..infinity).
G.f.: sum(1/(2-exp(n*x))/2^(n+1),n=0..infinity).
Sum_{n>=0} a(n)*log(1+x)^n/n! = o.g.f. of A101370. [Paul D. Hanna, Nov 07 2009]
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, May 03 2015
MATHEMATICA
Table[(PolyLog[ -z, 1/2]/2)^2, {z, 1, 25}] - Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Oct 10 2006
PROG
(PARI) {a(n)=sum(k=0, n, stirling(n, k, 2)*k!)^2} \\ Paul D. Hanna, Nov 07 2009
CROSSREFS
Sequence in context: A202836 A052774 A276960 * A012130 A151997 A119032
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 23 2006
EXTENSIONS
More terms from Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Oct 10 2006
STATUS
approved