login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119032
a(n+2) = 18*a(n+1) - a(n) + 8.
3
0, 9, 170, 3059, 54900, 985149, 17677790, 317215079, 5692193640, 102142270449, 1832868674450, 32889493869659, 590178020979420, 10590314883759909, 190035489886698950, 3410048503076821199, 61190837565496082640, 1098025027675852666329, 19703259660599851911290
OFFSET
1,2
COMMENTS
Arises in calculating A107075. A053606 follows the same recurrence.
FORMULA
a(n+1) = 9*a(n+1) + 4 + (80*a(n)^2+80*a(n)+25)^(1/2).
G.f.: (9*x-x^2)/((1-x)*(1-18*x+x^2)).
a(n) = ((sqrt(5)+2)/8)*(9+4*sqrt(5))^(n-1) + ((-sqrt(5)+2)/8)*(9-4*sqrt(5))^(n-1) - 1/2. - Richard Choulet, Nov 26 2008
a(n) = (Lucas(6*n-3)-4)/8, where Lucas(n) = A000032(n). - Gary Detlefs, Dec 07 2010
Product_{n>=2} (1 + 1/a(n)) = sqrt(5)/2 (= 10 * A020837). - Amiram Eldar, Dec 02 2024
MATHEMATICA
LinearRecurrence[{19, -19, 1}, {0, 9, 170}, 20] (* Amiram Eldar, Dec 02 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Aug 30 2007, Oct 09 2007
STATUS
approved