|
|
A122443
|
|
Least prime factor of powers of semiprimes.
|
|
2
|
|
|
1, 2, 2, 3, 2, 2, 3, 2, 3, 2, 5, 2, 3, 2, 5, 2, 2, 3, 2, 7, 3, 5, 3, 2, 2, 2, 5, 3, 2, 7, 3, 2, 5, 2, 3, 7, 3, 2, 5, 2, 2, 3, 5, 2, 7, 11, 2, 3, 3, 7, 2, 3, 2, 11, 5, 2, 5, 2, 3, 7, 2, 13, 3, 2, 3, 5, 11, 2, 2, 3, 2, 7, 5, 2, 11, 3, 2, 5, 2, 7, 2, 3, 13, 3, 2, 5, 3, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
FactorInteger[#][[1, 1]] & /@ Select[Range@ 250, Function[n, Or[n == 1, And[Length@ # == 1, EvenQ@ First@ #], And[Length@ # == 2, SameQ @@ #]] &[FactorInteger[n][[All, -1]]]]] (* Michael De Vlieger, Mar 04 2017 *)
|
|
PROG
|
(PARI) is(n)=my(f=factor(n)[, 2]); #f==0 || (#f==2 && f[1]==f[2]) || (#f==1 && f[1]%2==0);
spf(n) = if (n==1, 1, factor(n)[1, 1]);
lista(nn) = {for (n=1, nn, if (is(n), print1(spf(n), ", ")); ); } \\ Michel Marcus, Mar 04 2017
|
|
CROSSREFS
|
Cf. A122444 (greatest prime factor of powers of semiprimes).
Cf. A076396 (smallest prime factor of n-th perfect power).
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|