login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122283
Signature permutations of DEEPEN-transformations of non-recursive Catalan automorphisms in table A089840.
41
0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 10, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 17, 14, 13, 12
OFFSET
0,4
COMMENTS
Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "DEEPEN". In this recursion scheme the given automorphism is first applied at the root of general tree, before the algorithm recurses down to all subtrees. I.e., this corresponds to the pre-order (prefix) traversal of a Catalan structure, when it is interpreted as a general tree. The associated Scheme-procedures DEEPEN and !DEEPEN can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122284.
The recursion scheme FORK (described in A122201) is equivalent to a composition of recursion schemes SPINE (described in A122203) and DEEPEN, i.e., FORK(f) = DEEPEN(SPINE(f)) holds for all Catalan automorphisms f. These recursion schemes have well-defined inverses, that is, they are bijective mappings on the set of all Catalan automorphisms. Thus we can equivalently define that DEEPEN(f) = FORK(SPINE^{-1}(f)). Specifically, if g = SPINE(f), then (f s) = (cond ((pair? s) (let ((t (g s))) (cons (car t) (g^{-1} (cdr t))))) (else s)) that is, to obtain an automorphism f which gives g when subjected to recursion scheme SPINE, we compose g with its own inverse applied to the cdr-branch of a S-expression. This implies that for any non-recursive automorphism f in the table A089840, SPINE^{-1}(f) is also in A089840, which in turn implies that the rows of table A122283 form a (proper) subset of the rows of table A122201. E.g., row 1 of A122283 is row 21 of A122201, row 2 of A122283 is row 3613 of A122201, row 17 of A122283 is row 65352 of A122201, row 21 of A122283 is row 251 of A122201. - Antti Karttunen, May 25 2007
REFERENCES
A. Karttunen, paper in preparation, draft available by e-mail.
PROG
(Scheme:) (define (DEEPEN foo) (letrec ((bar (lambda (s) (map bar (foo s))))) bar))
(define (!DEEPEN foo!) (letrec ((bar! (lambda (s) (foo! s) (for-each bar! s) s))) bar!))
CROSSREFS
The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A122301, 2: A122300, 3: A122303, 4: A122305, 5: A122307, 6: A122309, 7: A122311, 8: A122313, 9: A122315, 10: A122317, 11: A122319, 12: A122321, 13: A122323, 14: A122325, 15: A122327, 16: A122329, 17: A122331, 18: A122333, 19: A122335, 20: A122337, 21: A122339. See also tables A089840, A122200, A122201-A122204, A122285-A122288, A122289-A122290.
Sequence in context: A122284 A122203 A122287 * A122204 A122288 A122201
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Sep 01 2006
STATUS
approved