The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122038 a(n) = 1*3^(3*n) + 2*3^(2*n) - 3*3^(1*n). 1
 36, 864, 21060, 544320, 14466276, 388481184, 10469912580, 282515610240, 7626372266916, 205898105486304, 5559123328143300, 150095200154477760, 4052560236745849956, 109419034885082920224, 2954313118333054841220 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..690 Index entries for linear recurrences with constant coefficients, signature (39,-351,729). FORMULA a(n) = 3^(3*n) + 2*3^(2*n) - 3^(n+1) = (3^(n-1) + 1)*(3^n-1)*3^(n+1). From G. C. Greubel, Oct 04 2019: (Start) G.f.: 36*x*(1-15*x)/((1-3*x)*(1-9*x)*(1-27*x)). E.g.f.: exp(27*x) + 2*exp(9*x) - 3*exp(3*x). (End) MAPLE A122038:=n->1*3^(3*n)+2*3^(2*n)-3*3^(1*n): seq(A122038(n), n=1..20); # Wesley Ivan Hurt, Apr 23 2017 MATHEMATICA LinearRecurrence[{39, -351, 729}, {36, 864, 21060}, 20] (* G. C. Greubel, Oct 04 2019 *) CoefficientList[Series[36x (1-15x)/((1-3x)(1-9x)(1-27x)), {x, 0, 20}], x] (* Harvey P. Dale, Aug 16 2021 *) PROG (PARI) for(n=1, 20, print1(3^(3*n)+2*3^(2*n)-3^(n+1), ", ")) (MAGMA) I:=[36, 864, 21060]; [n le 3 select I[n] else 39*Self(n-1) - 351*Self(n-2) +729*Self(n-3): n in [1..20]]; // G. C. Greubel, Oct 04 2019 (Sage) def A122038_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P( 36*x*(1-15*x)/((1-3*x)*(1-9*x)*(1-27*x)) ).list() a=A122038_list(20); a[1:] # G. C. Greubel, Oct 04 2019 (GAP) a:=[36, 864, 21060];; for n in [4..20] do a[n]:=39*a[n-1] -351*a[n-2] +729a[n-3]; od; a; # G. C. Greubel, Oct 04 2019 CROSSREFS Cf. A122041. Sequence in context: A081142 A061694 A264192 * A222926 A204101 A283199 Adjacent sequences:  A122035 A122036 A122037 * A122039 A122040 A122041 KEYWORD nonn,easy AUTHOR Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 14 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 13:11 EST 2022. Contains 350538 sequences. (Running on oeis4.)