login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A121999
Primes p such that p^2 divides Sierpinski number A014566((p-1)/2).
6
OFFSET
1,1
COMMENTS
Subsequence of A003628.
No other terms below 10^11. - Max Alekseyev, Sep 18 2010
LINKS
Eric Weisstein's World of Mathematics, Sierpinski Number of the First Kind.
FORMULA
Elements of A125854 that are congruent to 5 or 7 modulo 8, i.e., primes p such that p == 5 or 7 (mod 8) and 2^(p-1) == 1+p (mod p^2). - Max Alekseyev, Sep 18 2010
MATHEMATICA
Do[p=Prime[n]; f=((p-1)/2)^((p-1)/2)+1; If[IntegerQ[f/p^2], Print[p]], {n, 1, 3373}]
PROG
(PARI) { forprime(p=3, 10^11, if(Mod((p-1)/2, p^2)^((p-1)/2)==-1, print(p); )) } \\ Max Alekseyev, Sep 18 2010
CROSSREFS
Sequence in context: A152865 A333422 A108272 * A069530 A259032 A087144
KEYWORD
bref,more,nonn
AUTHOR
Alexander Adamchuk, Sep 11 2006
STATUS
approved