login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121883
a(n) = (2*a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), with a(1)=..=a(4)=1.
2
1, 1, 1, 1, 3, 7, 23, 187, 1049, 11889, 241169, 3461609, 133910987, 6440667383, 259246821927, 32041224742643, 3584042412456241, 447926142061771361, 160270294066699831201, 42116645114696072883921, 17694226961557153345377043, 16622226330147665886966252007
OFFSET
1,5
LINKS
A. N. W. Hone, Algebraic curves, integer sequences and a discrete Painlevé transcendent, arXiv:0807.2538 [nlin.SI], 2008; Proceedings of SIDE 6, Helsinki, Finland, 2004.
MAPLE
a:= proc(n) option remember;
if n < 5 then 1
else (2*a(n-1)*a(n-3) + a(n-2)^2)/a(n-4)
fi;
end proc:
seq(a(n), n = 1..30); # G. C. Greubel, Oct 08 2019
MATHEMATICA
a[n_]:= a[n]= If[n<5, 1, (2*a[n-1]a[n-3] + a[n-2]^2)/a[n-4]]; Table[a[n], {n, 30}]
RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1, a[n]==(2a[n-1]a[n-3]+ a[n-2]^2)/ a[n-4]}, a, {n, 20}] (* Harvey P. Dale, May 27 2014 *)
PROG
(PARI) my(m=30, v=concat([1, 1, 1, 1], vector(m-4))); for(n=5, m, v[n] = (2*v[n-1]*v[n-3] + v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Oct 08 2019
(Magma) [n lt 5 select 1 else (2*Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Oct 08 2019
(Sage)
@CachedFunction
def a(n):
if (n<5): return 1
else: return (2*a(n-1)*a(n-3) + a(n-2)^2)/a(n-4)
[a(n) for n in (1..30)] # G. C. Greubel, Oct 08 2019
(GAP) a:=[1, 1, 1, 1];; for n in [5..30] do a[n]:=(2*a[n-1]*a[n-3] + a[n-2]^2)/a[n-4]; od; a; # G. C. Greubel, Oct 08 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 09 2006
EXTENSIONS
Edited by N. J. A. Sloane, Sep 15 2006
More terms added by G. C. Greubel, Oct 08 2019
STATUS
approved