login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121735
Real term generated from a complex product operation.
1
1, -1, 6, -12, -60, 720, -2520, -20160, 362880, -1814400, -19958400, 479001600, -3113510400, -43589145600, 1307674368000, -10461394944000, -177843714048000, 6402373705728000, -60822550204416000, -1216451004088320000, 51090942171709440000, -562000363888803840000
OFFSET
1,3
COMMENTS
The signed sequence is a(n)=n!*T_n(-1/2) for n>1 where T are the Chebyshev polynomials. Therefore a(n)=n!=A000142(n) if 3 divides n, else a(n)=-n!/2=-A001710(n) (n>1). - R. J. Mathar, Aug 25 2006
FORMULA
Let a(1) = 1; for n>1, a(n) = Re(Product_{k=1..n} k*exp(i*2*Pi/3)).
EXAMPLE
a(3) = 6 = Re((1*exp(i*2*Pi/3))*(2*exp(i*2*Pi/3))*(3*exp(i*2*Pi/3))).
MAPLE
with(orthopoly) ; A121735 := proc(n) if n= 1 then RETURN(1) ; else RETURN( n!*T(n, -1/2)) ; fi ; end: for n from 1 to 25 do print(A121735(n)) ; od ; # R. J. Mathar, Aug 25 2006
PROG
(PARI) A121735(n)={ local(T) ; if(n==1, return(1), x=-1/2 ; T=poltchebi(n) ; return(n!*eval(T)) ; ) ; } { for(n=1, 25, print1(A121735(n), ", ") ; ) ; } \\ R. J. Mathar, Nov 07 2006
CROSSREFS
Sequence in context: A123900 A103972 A299855 * A070970 A330974 A045780
KEYWORD
sign,easy
AUTHOR
Gary W. Adamson, Aug 18 2006
EXTENSIONS
More terms from R. J. Mathar, Nov 07 2006
STATUS
approved