login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121546
a(n) = dimension of the space in which the sphere of radius n is of maximum volume.
0
5, 24, 56, 100, 156, 225, 307, 401, 508, 627, 759, 904, 1061, 1231, 1413, 1607, 1815, 2035, 2267, 2512, 2770, 3040, 3323, 3618, 3926, 4246, 4579, 4925, 5283, 5654, 6037, 6433, 6841, 7262, 7696, 8142, 8601, 9072, 9556, 10052, 10561, 11083, 11617, 12163
OFFSET
1,1
LINKS
John Moeller, Reasoning in Higher Dimensions: Hyperspheres, onTopology Blog, 3 March 2009.
FORMULA
a(n) >= 6.2835n^2 - 0.009903n - 0.9212 is a lower bound on the real value of the dimension.
MAPLE
N:= 10^5: # to get all terms <= N
G[1]:= 2/Pi:
G[2]:= 3/4:
L[2]:= 0:
for n from 3 to N do
G[n]:= G[n-2]*(n+1)/n;
L[n]:= floor(G[n]);
if L[n] <> L[n-1] then
A[L[n]]:= n
fi
od:
seq(A[i], i=1..L[N]); # Robert Israel, Jan 05 2016
MATHEMATICA
vol[n_, r_]:=If[IntegerQ[n/2], (Pi^(n/2)*r^n)/(n/2)!, (Pi^((n-1)/2)*((n+1)/2)!*2^(n+1)*r^n)/(n+1)!];
dim[r_]:=Block[{d=1}, While[vol[d, r]<vol[d+1, r], d++]; d];
dim/@Range@30 (* Ivan N. Ianakiev, Dec 27 2015 *)
PROG
(PARI) V(d, r)=Pi^(d/2)*r^d/gamma(d/2+1)
a(n)=my(d=ceil(6.2835*n^2-0.009903*n-0.9212)); while(V(d, n)<V(d-1, n), d--); while(V(d, n)<V(d+1, n), d++); d \\ Charles R Greathouse IV, Mar 06 2014
CROSSREFS
Sequence in context: A372455 A202326 A085646 * A135703 A258290 A205669
KEYWORD
nonn
AUTHOR
Sergio Falcon, Oct 10 2007
STATUS
approved