login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of bridged bicyclic skeletons with n carbon atoms (see Parks et al. for precise definition).
8

%I #21 Sep 08 2019 07:22:15

%S 1,2,6,15,39,99,258,671,1762,4657,12372,33036,88590,238483,644045,

%T 1744542,4737341,12894158,35165994,96083192,262951511,720685274,

%U 1977846334,5434588909,14949284828,41163690109,113451949753,312955174089,863965424349,2386874582238

%N Number of bridged bicyclic skeletons with n carbon atoms (see Parks et al. for precise definition).

%C Equivalently, the number of connected graphs on n unlabeled nodes with exactly 2 cycles of the same even length joined along half their length and all nodes having degree at most 4. The resulting graph will have three equal length cycles. - _Andrew Howroyd_, May 25 2018

%H Andrew Howroyd, <a href="/A121331/b121331.txt">Table of n, a(n) for n = 5..200</a>

%H Camden A. Parks and James B. Hendrickson, <a href="https://doi.org/10.1021/ci00002a021">Enumeration of monocyclic and bicyclic carbon skeletons</a>, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).

%F a(n) ~ c * d^n / sqrt(n), where d = 1/A261340 = 2.815460033176150746526616778..., c = 0.0064202170754... . - _Vaclav Kotesovec_, Sep 08 2019

%e From _Andrew Howroyd_, May 25 2018: (Start)

%e Illustration of graphs for n=5 and n=6:

%e o o--o o

%e /|\ /|\ /|\

%e o o o o o o o o o--o

%e \|/ \|/ \|/

%e o o o

%e .

%e Illustration of graphs for n=7:

%e o--o o--o--o o--o o o o o

%e /|\ /|\ /|\ /|\ /|\ /|\ /

%e o o o o o o o o o--o o o o o o o--o o o o

%e \|/ \|/ \|/ / \|/ \ \|/ | \|/ \

%e o--o o o o o o o o o o

%e (End)

%t G[n_] := Module[{g}, g[_] = 0; Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];

%t C1[n_] := Sum[(d1^(3*k)+3*d1^k*d2^k + 2*d3^k), {k, 1, Quotient[n, 3]}]/12;

%t C2[n_] := Sum[(d1^Mod[k, 2]*d2^Quotient[k, 2])^3 + 3*d1^Mod[k, 2]* d2^(Quotient[k, 2] + k) + 2*d3^Mod[k, 2]*d6^Quotient[k, 2], {k, 1, Quotient[n, 3]}]/12;

%t seq[n_] := Module[{s, d, g}, s = G[n]; d = x*(s^2 + (s /. x -> x^2))/2; g[p_, e_] := Normal[(p+O[x]^(Quotient[n, e]+1))] /. x :> x^e; g[s, 1]^2* (C1[n-2] /. Thread[{d1, d2, d3} :> {g[d, 1], g[d, 2], g[d, 3]}]) + g[s, 2]*(C2[n-2] /. Thread[{d1, d2, d3, d6} :> {g[d, 1], g[d, 2], g[d, 3], g[d, 6]}]) + O[x]^n] // CoefficientList[#, x]& // Drop[#, 3]&;

%t seq[33] (* _Jean-François Alcover_, Sep 08 2019, after _Andrew Howroyd_ *)

%o (PARI) \\ here G is A000598 as series

%o G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}

%o C1(n)={sum(k=1, n\3, (d1^(3*k) + 3*d1^k*d2^k + 2*d3^k))/12}

%o C2(n)={sum(k=1, n\3, (d1^(k%2)*d2^(k\2))^3 + 3*d1^(k%2)*d2^(k\2+k) + 2*d3^(k%2)*d6^(k\2))/12}

%o seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2,d3],[g(d,1), g(d,2), g(d,3)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d3,d6], [g(d,1), g(d,2), g(d,3), g(d,6)]))} \\ _Andrew Howroyd_, May 25 2018

%Y Cf. A121158, A121162, A121165, A305132.

%K nonn

%O 5,2

%A _N. J. A. Sloane_, Aug 27 2006

%E Corrected by _Franklin T. Adams-Watters_ and _T. D. Noe_, Oct 25 2006

%E a(24) corrected and terms a(26) and beyond from _Andrew Howroyd_, May 25 2018