login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121331
Number of bridged bicyclic skeletons with n carbon atoms (see Parks et al. for precise definition).
8
1, 2, 6, 15, 39, 99, 258, 671, 1762, 4657, 12372, 33036, 88590, 238483, 644045, 1744542, 4737341, 12894158, 35165994, 96083192, 262951511, 720685274, 1977846334, 5434588909, 14949284828, 41163690109, 113451949753, 312955174089, 863965424349, 2386874582238
OFFSET
5,2
COMMENTS
Equivalently, the number of connected graphs on n unlabeled nodes with exactly 2 cycles of the same even length joined along half their length and all nodes having degree at most 4. The resulting graph will have three equal length cycles. - Andrew Howroyd, May 25 2018
LINKS
Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).
FORMULA
a(n) ~ c * d^n / sqrt(n), where d = 1/A261340 = 2.815460033176150746526616778..., c = 0.0064202170754... . - Vaclav Kotesovec, Sep 08 2019
EXAMPLE
From Andrew Howroyd, May 25 2018: (Start)
Illustration of graphs for n=5 and n=6:
o o--o o
/|\ /|\ /|\
o o o o o o o o o--o
\|/ \|/ \|/
o o o
.
Illustration of graphs for n=7:
o--o o--o--o o--o o o o o
/|\ /|\ /|\ /|\ /|\ /|\ /
o o o o o o o o o--o o o o o o o--o o o o
\|/ \|/ \|/ / \|/ \ \|/ | \|/ \
o--o o o o o o o o o o
(End)
MATHEMATICA
G[n_] := Module[{g}, g[_] = 0; Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
C1[n_] := Sum[(d1^(3*k)+3*d1^k*d2^k + 2*d3^k), {k, 1, Quotient[n, 3]}]/12;
C2[n_] := Sum[(d1^Mod[k, 2]*d2^Quotient[k, 2])^3 + 3*d1^Mod[k, 2]* d2^(Quotient[k, 2] + k) + 2*d3^Mod[k, 2]*d6^Quotient[k, 2], {k, 1, Quotient[n, 3]}]/12;
seq[n_] := Module[{s, d, g}, s = G[n]; d = x*(s^2 + (s /. x -> x^2))/2; g[p_, e_] := Normal[(p+O[x]^(Quotient[n, e]+1))] /. x :> x^e; g[s, 1]^2* (C1[n-2] /. Thread[{d1, d2, d3} :> {g[d, 1], g[d, 2], g[d, 3]}]) + g[s, 2]*(C2[n-2] /. Thread[{d1, d2, d3, d6} :> {g[d, 1], g[d, 2], g[d, 3], g[d, 6]}]) + O[x]^n] // CoefficientList[#, x]& // Drop[#, 3]&;
seq[33] (* Jean-François Alcover, Sep 08 2019, after Andrew Howroyd *)
PROG
(PARI) \\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
C1(n)={sum(k=1, n\3, (d1^(3*k) + 3*d1^k*d2^k + 2*d3^k))/12}
C2(n)={sum(k=1, n\3, (d1^(k%2)*d2^(k\2))^3 + 3*d1^(k%2)*d2^(k\2+k) + 2*d3^(k%2)*d6^(k\2))/12}
seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p, e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s, 1)^2*substvec(C1(n-2), [d1, d2, d3], [g(d, 1), g(d, 2), g(d, 3)]) + g(s, 2)*substvec(C2(n-2), [d1, d2, d3, d6], [g(d, 1), g(d, 2), g(d, 3), g(d, 6)]))} \\ Andrew Howroyd, May 25 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 27 2006
EXTENSIONS
Corrected by Franklin T. Adams-Watters and T. D. Noe, Oct 25 2006
a(24) corrected and terms a(26) and beyond from Andrew Howroyd, May 25 2018
STATUS
approved