login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121138
Numbers of isomers of unbranched a-4-catapolyheptagons - see Brunvoll reference for precise definition.
2
1, 1, 3, 10, 46, 192, 840, 3584, 15392, 65536, 278656, 1179648, 4981248, 20971520, 88082432, 369098752, 1543512064, 6442450944, 26843578368, 111669149696, 463856599040, 1924145348608, 7971459825664, 32985348833280, 136339443941376, 562949953421312
OFFSET
1,3
REFERENCES
J. Brunvoll, S. J. Cyvin and B. N. Cyvin, Isomer enumeration of polygonal systems..., J. Molec. Struct. (Theochem), 364 (1996), 1-13.
FORMULA
Empirical (for n>=4): a(n) = 2^(n-8)*((n+6)*2^n + 8 - 8*(-1)^n). - Vaclav Kotesovec, Nov 29 2012
Empirical G.f.: -3/128 + x^3/4 + x^2/2 + 49*x/64 - (296*x^3 - 140*x^2 + 6*x + 3)/(128*(2*x-1)*(2*x+1)*(4*x-1)^2). - Vaclav Kotesovec, Nov 29 2012
From Colin Barker, Oct 28 2016: (Start)
a(n) = 4^(n-4)*(n+6) for n>3 and even.
a(n) = 2^(n-8)*(2^n*(n+6)+16) for n>3 and odd.
a(n) = 8*a(n-1)-12*a(n-2)-32*a(n-3)+64*a(n-4) for n>7.
(End)
MAPLE
H := proc(r, alpha, q) local rhalf, alphahalf ; rhalf := floor(r/2) ; alphahalf := floor(alpha/2) ; (binomial(rhalf-1, alphahalf-1)*(q-3)+binomial(rhalf-1, alphahalf))*(q-3)^(rhalf-alphahalf-1) ; end: J := proc(r, alpha, q) (binomial(r-2, alpha-2)*(q-3)^2+2*binomial(r-2, alpha-1)*(q-3)+binomial(r-2, alpha))*(q-3)^(r-alpha-2) ; end: Ifunc := proc(r, alpha, q) J(r, alpha, q)/4+binomial(2, r-alpha)/4+ (1+(-1)^(r+alpha)+(1+(-1)^alpha)*(1-(-1)^r)/2)*H(r, alpha, q)/4 ; end: A121138 := proc(n) if n = 1 then 1 ; else Ifunc(n, 1, 7) ; fi ; end: for n from 1 to 80 do printf("%d, ", A121138(n)) ; od: # R. J. Mathar, Aug 07 2008
MATHEMATICA
Rest[CoefficientList[Series[-3/128+x^3/4+x^2/2+49*x/64-(296*x^3-140*x^2+6*x+3)/(128*(2*x-1)*(2*x+1)*(4*x-1)^2), {x, 0, 20}], x]] (* Vaclav Kotesovec, Nov 29 2012 *)
LinearRecurrence[{8, -12, -32, 64}, {1, 1, 3, 10, 46, 192, 840}, 30] (* Harvey P. Dale, Jul 07 2024 *)
PROG
(PARI) Vec(x*(1-7*x+7*x^2+30*x^3-30*x^4-24*x^5-16*x^6)/((1-2*x)*(1+2*x)*(1-4*x)^2) + O(x^30)) \\ Colin Barker, Oct 28 2016
CROSSREFS
Sequence in context: A005143 A356572 A270493 * A355050 A371549 A074508
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 13 2006
EXTENSIONS
Extended beyond a(10) by R. J. Mathar, Aug 07 2008
STATUS
approved