login
A121049
Let p_n be the polynomial of degree n-1 that interpolates the first n primes (i.e., p_n(i) = prime(i) for 1 <= i <= n.) Then a(n) = p_n(n+1)/2.
0
1, 2, 4, 4, 11, -3, 36, -46, 133, -213, 419, -586, 716, -199, -1807, 7570, -20637, 47563, -97849, 185438, -326192, 531721, -785058, 980926, -780084, -700944, 5511613, -18000159, 46704269, -107137804, 225187101, -439627178, 799622938, -1347732434, 2069035230
OFFSET
1,2
COMMENTS
As n approaches infinity, |a(n)|^(1/n) converges to 2, but a(n+1)/a(n) does not appear to converge.
FORMULA
a(n) = Sum_{j=1..n} (-1)^(j+n)*prime(j)*binomial(n,j-1)/2.
EXAMPLE
p_3(x) = (x^2-x+4)/2. p_3(1) = 2, p_3(2) = 3, p_3(3) = 5, so
a(3) = p_3(4)/2 = 4.
MATHEMATICA
Table[ Sum[(-1)^(j + r)Prime[j] Binomial[r, j - 1]/2, {j, r}], {r, 50}]
CROSSREFS
Sequence in context: A327544 A202076 A199825 * A056415 A242993 A366045
KEYWORD
easy,sign
AUTHOR
Joseph Van Name (prism720(AT)yahoo.com), Aug 08 2006
EXTENSIONS
Edited and extended by David Wasserman, Aug 16 2006
Corrected by N. J. A. Sloane, Oct 29 2006
STATUS
approved