Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 30 2023 02:11:53
%S 8,6,5,3,1,8,0,2,1,0,0,5,6,3,7,6,9,8,5,9,1,0,6,1,2,9,5,9,6,4,4,3,8,5,
%T 7,7,8,5,5,8,4,5,7,6,9,6,4,4,5,9,6,6,7,7,6,7,4,0,5,3,0,6,1,6,0,4,7,3,
%U 1,3,9,0,4,2,7,9,0,8,5,3,5,6,3,5,0,3,6,6,6,9,1,7,9,6,6,4,1,1,6,5,9,5,6,4,4
%N 10-adic integer x=...92160195896736500120813568 satisfying x^5 = x; also x^3 = -x = A120817; (x^2)^3 = x^2 = A091664; (x^4)^2 = x^4 = A018248.
%H Seiichi Manyama, <a href="/A120818/b120818.txt">Table of n, a(n) for n = 0..9999</a> (terms 0..999 from Paul D. Hanna)
%F x = 10-adic lim_{n->oo} 8^(5^n).
%e x equals the limit of the (n+1) trailing digits of 8^(5^n):
%e 8^(5^0)=(8), 8^(5^1)=327(68), 8^(5^2)=37778931862957161709(568), ...
%e x=...06160350476776695446967548558775834469592160195896736500120813568.
%e x^2=...0557423423230896109004106619977392256259918212890624 (A091664).
%e x^3=...3304553032451441224165530407839804103263499879186432 (A120817).
%e x^4=...9442576576769103890995893380022607743740081787109376 (A018248).
%e x^5=...6695446967548558775834469592160195896736500120813568 = x.
%o (PARI) {a(n)=local(b=8,v=[]);for(k=1,n+1,b=b^5%10^k;v=concat(v,(10*b\10^k)));v[n+1]}
%Y Cf. A120817, A091664, A018248.
%K base,nonn
%O 0,1
%A _Paul D. Hanna_, Jul 06 2006