login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120809
Integers of the form p^2*q in A120806: x+d+1 is prime for all divisors d of x. Both p and q are odd primes, with p and q distinct. See A054753.
3
1859, 331169, 2141399, 4641629, 6633419, 8447039, 10338119, 13526009, 20163059, 21603425, 24099569, 26187119, 26483321, 28226549, 33379569, 33485139, 40790009, 50139819, 52046075, 56152179, 57170075, 59824925, 72541799, 81638579, 104151839, 106624359, 106791269
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 1859 since x = 11*13^2, divisors(x) = {1, 11, 13, 11*13, 13^2, 11*13^2} and x+d+1 = {1861, 1871, 1873, 2003, 2029, 3719} are all primes.
MAPLE
with(numtheory); is3almostprime := proc(n) local L; if n in [0, 1] or isprime(n) then return false fi; L:=ifactors(n)[2]; if nops(L) in [1, 2, 3] and convert(map(z-> z[2], L), `+`) = 3 then return true else return false fi; end; L:=[]: for w to 1 do for k from 1 while nops(L)<=50 do x:=2*k+1; y:=simplify(x^(1/3)); if x mod 6 = 5 and not type(y, integer) #clunky and not issqrfree(x) and is3almostprime(x) and andmap(isprime, [x+2, 2*x+1]) then S:=divisors(x); Q:=map(z-> x+z+1, S); if andmap(isprime, Q) then L:=[op(L), x]; print(nops(L), ifactor(x)); fi; fi; od od;
PROG
(PARI) is(n) = my(f); if(!(n%2), return(0)); f = factor(n); if(f[, 2] != [1, 2]~ && f[, 2] != [2, 1]~, return(0)); fordiv(f, d, if(!isprime(n + d + 1), return(0))); 1; \\ Amiram Eldar, Aug 05 2024
CROSSREFS
Intersection of A054753 and A120806.
Sequence in context: A064978 A202913 A159212 * A213868 A022062 A107526
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jul 06 2006
EXTENSIONS
a(2) corrected and a(24)-a(27) added by Amiram Eldar, Aug 05 2024
STATUS
approved