login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120807
Cubes k in A120806: k+d+1 is prime for all divisors d of k. All cubes greater than 1 are cubes of odd primes.
4
1, 125, 357911, 28049850707778719, 1093838138707598549, 2498288375480240699, 2971816820123565959, 11368298790243739889, 14106863174732461979, 17104690428464397149, 21904077634699214681, 64352051556875937161, 82512915197756439761, 115892432166552995771, 231193025116112162501
OFFSET
1,2
LINKS
EXAMPLE
a(3) = 357911 since k = 357911 = 71^3, divisors(k) = {1, 71, 71^2, 71^3} and k+d+1 = {357913, 357983, 362953, 715823} are all primes.
MAPLE
L:=[]: for w to 1 do for k from 1 while nops(L)<=50 do p:=ithprime(k); x:=p^3; if p mod 6 = 5 and andmap(isprime, [x+2, 2*x+1]) then S:={p, p^2}; Q:=map(z-> x+z+1, S); if andmap(isprime, Q) then L:=[op(L), x]; print(nops(L), p, x); fi; fi; od od;
MATHEMATICA
Select[Range[4008000]^3, AllTrue[#+Divisors[#]+1, PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 26 2019 *)
PROG
(PARI) lista(kmax) = {my(f, k3, is); forstep(k = 1, kmax, 2, f = factor(k); k3 = k^3; for(i = 1, #f~, f[i, 2] *= 3); is = 1; fordiv(f, d, if(!isprime(k3 + d + 1), is = 0; break)); if(is, print1(k3, ", "))); } \\ Amiram Eldar, Aug 05 2024
CROSSREFS
Intersection of A000578 and A120806.
Cf. A120808.
Sequence in context: A161354 A318258 A003751 * A013836 A048563 A239060
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jul 06 2006
EXTENSIONS
a(13)-a(15) from Amiram Eldar, Aug 05 2024
STATUS
approved