The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120739 a(n) = Sum_{k=0..n} floor(C(n,k)/2). 2
 0, 0, 1, 2, 7, 14, 30, 60, 127, 254, 510, 1020, 2046, 4092, 8188, 16376, 32767, 65534, 131070, 262140, 524286, 1048572, 2097148, 4194296, 8388606, 16777212, 33554428, 67108856, 134217724, 268435448, 536870904, 1073741808, 2147483647 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Nonzero terms = row sums of triangle A166454. - Gary W. Adamson, Oct 14 2009 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 0..3322 Pantelimon Stanica, Tsutomu Sasao, Jon T. Butler, Distance Duality on Some Classes of Boolean Functions, Journal of Combinatorial Mathematics and Combinatorial Computing (to appear), 2017. [Theorem 9.] FORMULA a(n) = (2^n - A001316(n))/2. MATHEMATICA Table[Sum[Floor[Binomial[n, k]/2], {k, 0, n}], {n, 0, 40}] (* G. C. Greubel, Apr 18 2019 *) PROG (PARI) a(n)=(2^n-2^norml2(binary(n)))/2 (PARI) {a(n) = sum(k=0, n, binomial(n, k)\2)}; \\ G. C. Greubel, Apr 18 2019 (Haskell) a120739 n = if n < 2 then 0 else sum \$ a166454_row n -- Reinhard Zumkeller, Mar 04 2015 (Magma) [(&+[Floor(Binomial(n, k)/2): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Apr 18 2019 (Sage) [sum(floor(binomial(n, k)/2) for k in (0..n)) for n in (0..40)] # G. C. Greubel, Apr 18 2019 CROSSREFS Cf. A001316, A011848, A166454. Sequence in context: A289377 A289408 A290519 * A221318 A221319 A221320 Adjacent sequences: A120736 A120737 A120738 * A120740 A120741 A120742 KEYWORD easy,nonn AUTHOR Paul Barry, Jun 29 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 28 22:27 EST 2024. Contains 370400 sequences. (Running on oeis4.)