login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120582
Hankel transform of Sum_{k=0..floor(n/2)} binomial(2*k, k).
2
1, 2, 0, 0, -16, -32, -64, -128, 0, 0, 1024, 2048, 4096, 8192, 0, 0, -65536, -131072, -262144, -524288, 0, 0, 4194304, 8388608, 16777216, 33554432, 0, 0, -268435456, -536870912, -1073741824, -2147483648, 0, 0, 17179869184, 34359738368, 68719476736, 137438953472, 0, 0, -1099511627776
OFFSET
0,2
COMMENTS
Hankel transform of A100066(n+1).
FORMULA
a(n) = 2^n*(-sqrt(3)*cos(5*Pi*n/6 + Pi/3)/6 + (sqrt(3)/3 - 1/2)*sin(5*Pi*n/6 + Pi/3) + (sqrt(3)/3 + 1/2)*cos(Pi*n/6 + Pi/6) + sqrt(3)*sin(Pi*n/6 + Pi/6)/6).
G.f.: (1-2*x)*(1+2*x)^2/(1 - 4*x^2 + 16*x^4). - Colin Barker, Jun 27 2013
a(n) = 2^(n-1)*( (1+(-1)^n)*(ChebyshevU(n/2, 1/2) - ChebyshevU((n-2)/2, 1/2)) + (1 -(-1)^n)*ChebyshevU((n+1)/2, 1/2)). - G. C. Greubel, Jun 08 2022
MATHEMATICA
LinearRecurrence[{0, 4, 0, -16}, {1, 2, 0, 0}, 51] (* G. C. Greubel, Jun 08 2022 *)
PROG
(Magma) I:=[1, 2, 0, 0]; [n le 4 select I[n] else 4*Self(n-2) -16*Self(n-4): n in [1..51]]; // G. C. Greubel, Jun 08 2022
(SageMath)
def C(n): return floor(chebyshev_U(n, 1/2))
def A120582(n): return 2^n*( ((n+1)%2)*(C(n/2) - C((n-2)/2)) + (n%2)*C((n+1)/2) )
[A120582(n) for n in (0..50)] # G. C. Greubel, Jun 08 2022
CROSSREFS
Sequence in context: A158465 A003193 A108474 * A003784 A368849 A244143
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jun 15 2006
STATUS
approved