OFFSET
1,1
COMMENTS
Is this sequence a permutation of the positive integers?
Length of rows varies widely, is often 1. Row 129 has 12236 terms. - Michael De Vlieger, Oct 03 2017
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..18474 (rows 1 <= n <= 129)
EXAMPLE
Array begins:
2
1
3
6
4,12
7,14,28
Now these terms add up to 77. So row 7 is the divisors of 77 which do not occur earlier in the sequence. 1 and 7 occur in earlier rows, so row 7 is (11,77).
From Michael De Vlieger, Oct 03 2017: (Start)
Lengths of rows of a(n) and relation to number of divisors of the sum of terms in all previous rows.
Key: n = index; m = length of row n; k = sum of the terms in all previous rows.
tau(k(n-1)) = number of divisors of k of the previous row.
delta = tau(k(n-1)) - m: i.e., divisors of k(n - 1) not in row n of A120576.
.
n tau(k(n-1)) m delta k
--------------------------------------
1 2 2 0 2
2 2 1 1 3
3 2 1 1 6
4 4 1 3 12
5 6 2 4 28
6 6 3 3 77
7 4 2 2 165
8 8 5 3 438
9 8 4 4 1314
10 12 4 8 3312
11 30 22 8 12929
12 4 2 2 27705
13 8 3 5 70186
14 8 5 3 179216
15 20 10 10 541544
16 16 8 8 1559024
17 20 11 9 4603588
18 24 17 7 13776209
19 2 1 1 27552418
20 4 1 3 55104836
...
(End)
MATHEMATICA
f[t_] := Flatten[Append[t, Select[Divisors[Plus @@ t], FreeQ[t, # ] &]]]; Nest[f, {2}, 14] (* Ray Chandler, Jun 17 2006 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Leroy Quet, Jun 15 2006
EXTENSIONS
Extended by Ray Chandler, Jun 17 2006
STATUS
approved