login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120156
a(n) = 11 + floor((2 + Sum_{j=1..n-1} a(j))/3).
1
11, 15, 20, 27, 36, 48, 64, 85, 113, 151, 201, 268, 358, 477, 636, 848, 1131, 1508, 2010, 2680, 3574, 4765, 6353, 8471, 11295, 15060, 20080, 26773, 35697, 47596, 63462, 84616, 112821, 150428, 200571, 267428, 356570, 475427, 633903, 845204
OFFSET
1,1
LINKS
MATHEMATICA
A120156[n_]:= A120156[n]= 11 +Quotient[2+Sum[A120156[k], {k, n-1}], 3];
Table[A120156[n], {n, 60}] (* G. C. Greubel, Jul 06 2023 *)
PROG
(Magma)
function f(n, a, b)
t:=0;
for k in [1..n-1] do
t+:= a+Floor((b+t)/3);
end for;
return t;
end function;
g:= func< n, a, b | f(n+1, a, b)-f(n, a, b) >;
A120156:= func< n | g(n, 11, 2) >;
[A120156(n): n in [1..60]]; // G. C. Greubel, Jul 06 2023
(SageMath)
@CachedFunction
def A120156(n): return 11 +(2+sum(A120156(k) for k in range(1, n)))//3
[A120156(n) for n in range(1, 61)] # G. C. Greubel, Jul 06 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Graeme McRae, Jun 10 2006
STATUS
approved