login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A120025
Continued fraction expansion of the value of Minkowski's question mark function at the base of the natural logarithm.
1
2, 1, 4, 2, 2, 1, 1, 6, 2, 4, 1, 1, 1, 4, 1, 1, 2, 14, 2, 3, 2, 1, 1, 2, 2, 2, 1, 1, 8, 1, 2, 1, 1, 2, 2, 1, 3, 2, 11, 979, 3, 19, 1, 1, 39, 2, 1, 4, 4, 4, 1, 27, 1, 1, 22, 6, 1, 8, 13, 1, 1, 1, 24, 5, 3, 21, 8, 3, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 4, 1, 6, 1, 2, 1, 1, 12, 77, 2, 1, 4, 2, 4, 2, 1, 2, 1, 35, 2
OFFSET
0,1
FORMULA
2 + 2(Sum[(-1)^(k)/2^(1/9*k^2 + k - 1), {k, 3, n, 3}] + Sum[(-1)^(k)/2^((1/9)(k + 8)(k - 1)), {k, 4, n, 3}] + Sum[(-1)^(k)/2^((1/9)(k^2 + 5*k - 5)), {k, 2, n, 3}])
MATHEMATICA
ContinuedFraction[(cf = ContinuedFraction[E, 150(*arbitrary precision*)]; IntegerPart[E] + Sum[(-1)^(k)/2^(Sum[cf[[i]], {i, 2, k}] - 1), {k, 2, Length[cf]}]), 100]
CROSSREFS
Cf. A120026.
Sequence in context: A145983 A245025 A257495 * A109090 A220780 A323915
KEYWORD
cofr,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Jun 04 2006
STATUS
approved