|
|
A119697
|
|
a(n) = Fibonacci(n)*n*binomial(2*n,n)/(n+1).
|
|
0
|
|
|
0, 1, 4, 30, 168, 1050, 6336, 39039, 240240, 1487772, 9237800, 57551494, 359444736, 2250244100, 14115694320, 88707831750, 558368324640, 3519726403710, 22215931214400, 140389620550410, 888125492826000, 5623962934819320, 35645449061816880, 226114365012465150
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
Sum_{n>=0} a(n)/8^n = 7*sqrt(2/5) - 4. - Amiram Eldar, May 04 2023
|
|
MAPLE
|
seq(binomial(2*n, n)*n*combinat[fibonacci](n)/(n+1), n=0..27);
|
|
MATHEMATICA
|
Table[Fibonacci[n]n Binomial[2n, n]/(n+1), {n, 0, 40}] (* Harvey P. Dale, Apr 29 2022 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|