login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119579
a(n) = (n + n^2)*(binomial(2*n, n)).
0
0, 4, 36, 240, 1400, 7560, 38808, 192192, 926640, 4375800, 20323160, 93117024, 421848336, 1892909200, 8424486000, 37228204800, 163493866080, 714083503320, 3103696272600, 13431200244000, 57895542104400, 248675137991280
OFFSET
0,2
FORMULA
From Amiram Eldar, Feb 20 2021: (Start)
a(n) = A002378(n)*A000984(n).
Sum_{n>=1} (-1)^(n+1)/a(n) = -1 + 2*sqrt(5)*log(phi) - 4*log(phi)^2, where log(phi) = A002390. (End)
Sum_{n>=1} 1/a(n) = Pi^2/9 - Pi/sqrt(3) + 1. - Amiram Eldar, Jan 24 2022
MAPLE
[seq ((n+n^2)*(binomial(2*n, n)), n=0..29)];
MATHEMATICA
Table[n*(n + 1)*Binomial[2*n, n], {n, 0, 20}] (* Amiram Eldar, Feb 20 2021 *)
PROG
(PARI) a(n) = (n + n^2)*(binomial(2*n, n)); \\ Michel Marcus, Feb 20 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, May 31 2006
STATUS
approved