login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primitive elements of A119432.
4

%I #14 Nov 07 2020 11:36:42

%S 2,105,165,195,3003,3927,4389,4641,4845,5187,5313,5865,6555,7395,7905,

%T 8265,8835,9435,10005,10455,10545,10695,10965,11685,11985,12255,12765,

%U 13395,13485,13515,14145,14835,15045,15105,15555,16215,16815,17085

%N Primitive elements of A119432.

%C Elements of A119432 that are not divisible by any smaller element of that sequence.

%C Appears to be the lexicographically latest sequence of squarefree numbers such that all numbers with abundance >= -1 (see A103288) are divisible by one of the terms. - _Peter Munn_, Oct 19 2020

%H Charles R Greathouse IV, <a href="/A119433/b119433.txt">Table of n, a(n) for n = 1..10000</a>

%F 2 followed by odd elements of A119431.

%e From _Peter Munn_, Oct 23 2020: (Start)

%e Initial terms, showing factorization:

%e n a(n)

%e 1 2 = 2

%e 2 105 = 3 * 5 * 7

%e 3 165 = 3 * 5 * 11

%e 4 195 = 3 * 5 * 13

%e 5 3003 = 3 * 7 * 11 * 13

%e 6 3927 = 3 * 7 * 11 * 17

%e 7 4389 = 3 * 7 * 11 * 19

%e 8 4641 = 3 * 7 * 13 * 17

%e 9 4845 = 3 * 5 * 17 * 19

%e 10 5187 = 3 * 7 * 13 * 19

%e 11 5313 = 3 * 7 * 11 * 23

%e 12 5865 = 3 * 5 * 17 * 23

%e 13 6555 = 3 * 5 * 19 * 23

%e 14 7395 = 3 * 5 * 17 * 29

%e 15 7905 = 3 * 5 * 17 * 31

%e (End)

%t Block[{a = {}}, Do[If[And[NoneTrue[a, Mod[i, #] == 0 &], 2 EulerPhi[i] <= i], AppendTo[a, i]], {i, 20000}]; a] (* _Michael De Vlieger_, Nov 05 2020 *)

%Y Subsequence of A005117, A119432.

%Y Cf. A103288.

%K nonn

%O 1,1

%A _Franklin T. Adams-Watters_, May 19 2006