login
A118978
Array read by antidiagonals: the n-th row contains the binomial transform of row n-1 of A014410.
1
2, 3, 2, 4, 6, 2, 5, 10, 9, 2, 6, 15, 20, 12, 2, 7, 21, 35, 34, 15, 2, 8, 28, 56, 70, 52, 18, 2, 9, 36, 84, 126, 125, 74, 21, 2, 10, 45, 120, 210, 252, 205, 100, 24, 2, 11, 55, 165, 330, 462, 461, 315, 130, 27, 2, 12, 66, 220, 495, 792, 924, 786, 460, 164, 30, 2, 13, 78, 286, 715, 1287
OFFSET
1,1
COMMENTS
Each row of A014410 is extended by adding an infinite sequence of zeros,
and the binomial transform of this extended row (assuming the first term has index 0) is placed into the array here.
EXAMPLE
First few rows of the array:
2, 2, 2, 2, 2, ... (binomial transform of 2,0,0,0,0,...)
3, 6, 9, 12, 15, ... (binomial transform of 3,3,0,0,0,...)
4, 10, 20, 34, 52, ... (binomial transform of 4,6,4,0,0,...)
5, 15, 35, 70, 125, ...
MAPLE
read("transforms") ; A014410 := proc(n, m) if m <= n-1 and m >= 1 then binomial(n, m) ; else 0 ; end if; end proc:
A118978 := proc(n, m) L := [seq(A014410(n+1, k), k=1..m+1) ] ; BINOMIAL(L) ; op(m+1, %) ; end proc:
for d from 1 to 20 do for m from 0 to d-1 do printf("%d, ", A118978(d-m, m)) ; end do: printf("\n") ; end do; # R. J. Mathar, Jun 15 2010
CROSSREFS
Sequence in context: A182309 A043263 A321326 * A194998 A215190 A214943
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, May 07 2006
EXTENSIONS
Edited and extended by R. J. Mathar, Jun 15 2010
STATUS
approved