login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118756
a(n) = smallest prime p such that p is the home prime (cf. A037274) of exactly n natural numbers.
29
2, 23, 211, 379, 773, 3389, 23251, 3761, 178069, 77773, 379811, 378997, 747521, 2337691, 3789293, 3574657
OFFSET
1,1
COMMENTS
a(17) > 10^7, a(18) = 3784463. - Robert G. Wilson v, Oct 01 2007
FORMULA
a(n) = A037274(A215408(n)). - Jonathan Sondow, Aug 09 2012
EXAMPLE
23 is the home prime of both 6 and 23, thus a(2) = 23; 211 is the home prime of 4, 22 and 211, thus a(3) = 211.
More compactly: (2) -> 2, (6,23) -> 23, (4,22,211) -> 211,
(42,74,237,379) -> 379, (10,25,55,511,773) -> 773,
(118, 259, 737, 801, 1167, 3389) -> 3389,
{250, 1506, 2555, 3865, 5773, 6502, 23251} -> 23251,
{140, 332, 514, 566, 1281, 2257, 2283, 3761} -> 3761,
{4206, 7402, 10786, 16123, 23701, 25393, 67379, 137173, 178069} -> 178069,
{3786, 7262, 10078, 14513, 18417, 23631, 25039, 32449, 37877, 77773} -> 77773,
{41933, 50161, 56598, 103487, 192207, 206031, 216959, 239433, 307369, 363007, 379811} -> 379811,
{1798, 5982, 22931, 23997, 41315, 53033, 58263, 181293, 184102, 292051, 319421, 378997} -> 378997,
{722, 4938, 5718, 7646, 18929, 21919, 23823, 23953, 91277, 97941, 171409, 332647, 747521} -> 747521,
{87066, 128055, 138438, 153402, 175611, 226146, 358537, 465734, 588041, 675382, 866893, 1792003, 1564051, 2337691} -> 2337691,
{8691, 9725, 23585, 31437, 32897, 55389, 67491, 144995, 168163, 337499, 547617, 964849, 1875153, 3303841, 3789293} -> 3789293,
{5978, 10654, 27761, 40307, 47985, 111855, 156657, 172371, 202881, 250519, 357457, 379661, 407507, 488985, 1723971, 3574657} -> 3574657, etc. - Robert G. Wilson v, Oct 01 2007
MATHEMATICA
lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 10^7}];
lst = Sort@ lst; Table[d = n - 2; lsu = {}; Do[If[lst[[n]] == lst[[n + d]] && lst[[n - 1]] != lst[[n]] && lst[[n]] != lst[[n + d + 1]], AppendTo[lsu, lst[[n]] ]], {n, 188004 - d - 1}]; First@ Union@ lsu, {n, 3, 16}] (* Robert G. Wilson v, Oct 01 2007 *)
KEYWORD
nonn,base
AUTHOR
William Lindgren (william.lindgren(AT)sru.edu), Sep 04 2007, corrected Sep 15 2007
EXTENSIONS
a(7)-a(16) from Robert G. Wilson v, Sep 27 2007, Oct 01 2007
STATUS
approved