login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118501
A variation on Flavius's sieves (A099204, A099243): Start with the Chen numbers; at the k-th sieving step, remove every p-th term of the sequence remaining after the (k-1)-st sieving step, where p is the k-th prime; iterate.
0
2, 5, 17, 23, 53, 83, 127, 167, 181, 211, 281, 347, 449, 467, 499, 509, 641, 677, 821, 887, 941, 953, 1097, 1193, 1283, 1327, 1399, 1471, 1583, 1721, 1949, 2029, 2111, 2213, 2351, 2381, 2447, 2549, 2609, 2777, 3061, 3137, 3257, 3307, 3511, 3539, 3797
OFFSET
1,1
EXAMPLE
Start with
2 3 5 7 11 13 17 19 23 29 31 37 41 47 53 59 67 71 83 89 101 107 109 113 127 131 ... and delete every second term, giving
2 5 11 17 23 31 41 53 67 83 101 109 127 ... and delete every 3rd term, giving
2 5 17 23 41 53 83 101 127 ... and delete every 5th term, giving
2 5 17 23 53 83 101 127
.... Continue forever and what's left is the sequence.
MAPLE
ts_chen:= proc(n) local i, ans; ans:=[ ]: for i from 1 to n do if ( isprime(i) = 'true') then if ( isprime(i+2) = 'true' or numtheory[bigomega](i+2) = 2) then ans:=[ op(ans), i ] fi fi od: return ans end: S[1]:=convert(ts_chen(25000), set): for n from 2 to 390 do S[n]:=S[n-1] minus {seq(S[n-1][ithprime(n-1)*i], i=1..nops(S[n-1])/ithprime(n-1))} od: convert(S[390], list);
MATHEMATICA
cp=SequencePosition[PrimeOmega[Range[3800]], {1, _, 1|2}][[All, 1]] ; s={}; ps=Prime[Range[100]]; l=Range[400]; Do[l=Drop[l, {First[ps], -1, First[ps]}]; ps=Rest[ps], {17}]; Do[AppendTo[s, cp[[l[[n]]]]] , {n, 47}]; s (* James C. McMahon, Sep 19 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jani Melik, May 05 2006
STATUS
approved