Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jun 30 2021 01:49:36
%S 0,1,-3,53,-4871,2262505,-5269940619,61424345593757,
%T -3580474937256484367,1043606492389898678125009,
%U -1520932783784930699920673828115,11082945991224258678496051788222656261,-403804307486446123171767495567989349951171863
%N Column 0 of the matrix log of triangle A118190, after term in row n is multiplied by n: a(n) = n*[log(A118190)](n,0), where A118190(n,k) = 5^(k*(n-k)).
%C The entire matrix log of triangle A118190 is determined by column 0 (this sequence): [log(A118190)](n,k) = a(n-k)5^(k*(n-k))/(n-k) for n>k>=0.
%H G. C. Greubel, <a href="/A118194/b118194.txt">Table of n, a(n) for n = 0..50</a>
%F G.f.: x/(1-x)^2 = Sum_{n>=0} a(n)*x^n/(1-5^n*x). By using the inverse transformation: a(n) = Sum_{k=0..n} k*A118193(n-k)*5^(k*(n-k)) for n>=0.
%e Column 0 of log(A118190) = [0, 1, -3/2, 53/3, -4871/4, ...].
%e The g.f. is illustrated by:
%e x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + ...
%e = x/(1-5*x) -3*x^2/(1-25*x) +53*x^3/(1-125*x) -4871*x^4/(1-625*x) + 2262505*x^5/(1-3125*x) - 5269940619*x^6/(1-15625*x) + ...
%t A118193[n_]:= A118193[n]= If[n<2, (-1)^n, -Sum[5^(j*(n-j))*A118193[j], {j, 0, n-1}]];
%t a[n_]:= a[n]= -Sum[5^(j*(n-j))*j*A118193[j], {j, 0, n}];
%t Table[a[n], {n, 0, 30}] (* _G. C. Greubel_, Jun 29 2021 *)
%o (PARI) {a(n)=local(T=matrix(n+1,n+1,r,c,if(r>=c,(5^(c-1))^(r-c))), L=sum(m=1,#T,-(T^0-T)^m/m));return(n*L[n+1,1])}
%o (Sage)
%o @CachedFunction
%o def A118193(n): return (-1)^n if (n<2) else -sum(5^(j*(n-j))*A118193(j) for j in (0..n-1))
%o def a(n): return (-1)*sum(5^(j*(n-j))*j*A118193(j) for j in (0..n))
%o [a(n) for n in (0..30)] # _G. C. Greubel_, Jun 29 2021
%Y Cf. A118190.
%K sign
%O 0,3
%A _Paul D. Hanna_, Apr 15 2006