OFFSET
1,1
COMMENTS
The sum using all palindromic numbers < 10^8 is 3.37000183240... Extrapolating using Wynn's epsilon method gives a value near 3.37018... - Eric W. Weisstein, May 14 2006
LINKS
Joseph Myers, Table of n, a(n) for n = 1..1001
Joseph Myers, Polynomial-time algorithm.
Michael Penn, Does this series converge??, YouTube video, 2021.
Radovan Potůček, Formulas for the Sums of the Series of Reciprocals of the Polynomial of Degree Two with Non-zero Integer Roots, Algorithms as a Basis of Modern Applied Mathematics, Studies in Fuzziness and Soft Computing book series (STUDFUZZ, Vol. 404) Springer (2021), 363-382.
Eric Weisstein's World of Mathematics, Palindromic Number.
FORMULA
a(n) = Sum_{palindromes p>0} 1/p.
a(n) = Sum_{n>=2} 1/A002113(n).
EXAMPLE
3.3702832594973733204921572985...
MATHEMATICA
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits@ n}, If[ Union@ idn == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] > FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[Join[Take[idn, Ceiling[l/2]], Reverse[Take[idn, Floor[l/2]]]]], idfhn = FromDigits[Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits@ idfhn, Drop[ Reverse[ IntegerDigits@ idfhn], Mod[l, 2]]]]]]]]; pal = 1; sm = 0; Do[ While[pal < 10^n + 1, sm = N[sm + 1/pal, 128]; pal = NextPalindrome@ pal]; Print[{n, sm}], {n, 0, 17}] (* Robert G. Wilson v, Oct 20 2010 *)
CROSSREFS
KEYWORD
AUTHOR
Martin Renner, May 11 2006
EXTENSIONS
Corrected by Eric W. Weisstein, May 14 2006
Corrected and extended by Robert G. Wilson v, Oct 20 2010
Corrected and extended by Joseph Myers, Jun 26 2014
STATUS
approved