Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jun 19 2021 02:35:35
%S 23,47,73,233,353,647,1097,1283,1433,1453,1493,1613,1709,1889,2099,
%T 2161,2383,2621,2693,2713,3049,3533,3559,3923,4007,4133,4643,4793,
%U 4937,5443,5743,6101,7213,7309,7351,7561,7621,7829,8179,8237,8719,8849,9109,9343,9467
%N Primes p=prime(k) of level (1,2), i.e., such that A118534(k) = prime(k-2).
%C If prime(k) has level 1 in A117563, and if 2*prime(k) - prime(k+1) = prime(k-i), then we say that prime(k) has level (1,i). Sequence gives primes of level (1,2).
%C The prime p(4)=7 cannot be decomposed into weight*level+gap (<=> A117563(4)=0 <=> A118534(4)=0 <=> A117078(4)=0). For all other primes, an equivalent definition would be: Primes p(k) such that 2*p(k) - p(k+1) = p(k-2). - _Rémi Eismann_ and _M. F. Hasler_, Nov 08 2009
%H Remi Eismann, <a href="/A117876/b117876.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A000040(A066495(n+1)). - _Antti Karttunen_, Nov 30 2013
%e 29 = 2*23 - 17, 2179 = 2*2161 - 2143, 5749 = 2*5743 - 5737.
%t With[{m = 2}, Prime@ Select[Range[m + 1, 1200], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* _Michael De Vlieger_, Jul 16 2017 *)
%o (PARI) for(n=5,9999, 2*prime(n)-prime(n+1) == prime(n-2) & print1(prime(n),",")) \\ _M. F. Hasler_, Nov 08 2009
%o (PARI) is_A117876(p)={ isprime(p) & isprime(d=2*p-nextprime(p+2)) & d == precprime(precprime(p-2)-2) & p>7 } \\ _M. F. Hasler_, Nov 08 2009
%o (Scheme) (define (A117876 n) (A000040 (A066495 (+ 1 n)))) ;; _Antti Karttunen_, Nov 30 2013
%Y Cf. A000040, A066495, A117078, A117563, A118534.
%K nonn
%O 1,1
%A _Rémi Eismann_, May 02 2006
%E Edited by _N. J. A. Sloane_, May 14 2006
%E More terms from _Rémi Eismann_, May 25 2006
%E Definition corrected and terms double-checked by _M. F. Hasler_, Nov 08 2009