

A117789


Lucas numbers which are divisible by the sum of their digits.


0



1, 3, 4, 7, 18, 322, 5778, 505019158607, 84722519070079276, 1473646213395791149646646123, 105249261265075663875711417309855979021650214636
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..11.


EXAMPLE

322 is in the sequence because (1) it is a Lucas number, (2) the sum of its digits is 3+2+2=7 and 322 is divisible by 7.


PROG

(PARI) {m=370; a=1; b=3; print1(a, ", ", b, ", "); for(n=3, m, c=b+a; a=b; b=c; s=0; k=b; while(k>0, d=divrem(k, 10); k=d[1]; s=s+d[2]); if(b%s==0, print1(b, ", ")))}  (Klaus Brockhaus)


CROSSREFS

Cf. A000204.
Sequence in context: A307738 A041497 A042227 * A169892 A246805 A241660
Adjacent sequences: A117786 A117787 A117788 * A117790 A117791 A117792


KEYWORD

base,nonn


AUTHOR

Luc Stevens (lms022(AT)yahoo.com), Apr 15 2006


EXTENSIONS

a(9) corrected, a(10) and a(11) from Klaus Brockhaus, Apr 17 2006


STATUS

approved



