login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117749 Irregular triangle which contains in row n those partition numbers A000041(n*prime(m) + m + 1) which are congruent to 0 mod prime(m) for 1 <= m <= n. 1
30, 22, 490, 42, 1575, 10143, 4565, 37338, 1121505, 792, 12310, 124754, 5392783, 1575, 31185, 386155, 23338469, 75175, 1121505, 92669720, 5604, 173525, 3087735, 342325709, 1002, 10143, 386155, 8118264, 1188908248, 571701605655 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

REFERENCES

Robert Kanigel, The Man Who Knew Infinity, Washington Square Press, New York, 1991, page 302.

LINKS

Table of n, a(n) for n=2..31.

EXAMPLE

The row n=2 contains A000041(9)=30 from m=2, prime(m)=3.

The row n=3 contains A000041(8)=22 from m=1, prime(m)=2, and A000041(19)=490 from m=3, prime(m)=5.

The triangle starts in row n=2 as:

30;

22, 490;

42, 1575, 10143;

4565, 37338, 1121505;

792, 12310, 124754, 5392783;

1575, 31185, 386155, 23338469;

75175, 1121505, 92669720;

5604, 173525, 3087735, 342325709;

1002, 10143, 386155, 8118264, 1188908248, 571701605655;

MATHEMATICA

b = Table[Flatten[Table[If[Mod[PartitionsP[Prime[n]*m + n + 1], Prime[n]] == \ 0, PartitionsP[Prime[n]*m + n + 1], {}], {n, 1, m}]], {m, 1, 10}] Flatten[b]

CROSSREFS

Cf. A000041, A117750.

Sequence in context: A193220 A040872 A268855 * A283621 A100935 A112026

Adjacent sequences:  A117746 A117747 A117748 * A117750 A117751 A117752

KEYWORD

nonn,tabf

AUTHOR

Roger L. Bagula, Apr 14 2006

EXTENSIONS

Comments and definition rephrased, offset corrected - the Assoc. Eds. of the OEIS, Jun 27 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 06:22 EDT 2020. Contains 336442 sequences. (Running on oeis4.)