login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117748
Triangular numbers divisible by 3.
3
0, 3, 6, 15, 21, 36, 45, 66, 78, 105, 120, 153, 171, 210, 231, 276, 300, 351, 378, 435, 465, 528, 561, 630, 666, 741, 780, 861, 903, 990, 1035, 1128, 1176, 1275, 1326, 1431, 1485, 1596, 1653, 1770, 1830, 1953, 2016, 2145, 2211, 2346, 2415, 2556, 2628, 2775
OFFSET
1,2
LINKS
D. H. Lehmer, Recurrence formulas for certain divisor functions, Bull. Amer. Math. Soc., Vol. 49, No. 2 (1943), pp. 150-156.
FORMULA
a(n) = 3*A001318(n-1). - Michel Marcus, Apr 24 2016
From Colin Barker, Apr 24 2016: (Start)
a(n) = 3*(1-(-1)^n + 2*(-3+(-1)^n)*n + 6*n^2)/16.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 5.
G.f.: 3*x^2*(1+x+x^2) / ((1-x)^3*(1+x)^2).
(End)
E.g.f.: 3*(-1 - 2*x + exp(2*x) + 6*x^2*exp(2*x))*exp(-x)/16. - Ilya Gutkovskiy, Apr 24 2016
a(n) = A299412(n)/A007494(n). - Justin Gaetano, Feb 15 2018
Sum_{n>=2} 1/a(n) = 2 - 2*Pi/(3*sqrt(3)). - Amiram Eldar, Mar 24 2021
MATHEMATICA
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 3, 6, 15, 21}, 50] (* G. C. Greubel, Jun 19 2017 *)
Select[Accumulate[Range[0, 100]], Divisible[#, 3]&] (* Harvey P. Dale, Feb 11 2018 *)
PROG
(PARI) lista(nn) = {for (i = 0, nn, t = i*(i+1)/2; if (t % 3 == 0, print1(t, ", "); )); } \\ Michel Marcus, Jun 01 2013
(PARI) concat(0, Vec(3*x^2*(1+x+x^2)/((1-x)^3*(1+x)^2) + O(x^50))) \\ Colin Barker, Apr 24 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Luc Stevens (lms022(AT)yahoo.com), Apr 29 2006
STATUS
approved