login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117691
Expansion of (4+3*x+3*x^2+2*x^3-x^5-x^6-x^7)/(1-x^4)^2.
1
4, 3, 3, 2, 8, 5, 5, 3, 12, 7, 7, 4, 16, 9, 9, 5, 20, 11, 11, 6, 24, 13, 13, 7, 28, 15, 15, 8, 32, 17, 17, 9, 36, 19, 19, 10, 40, 21, 21, 11, 44, 23, 23, 12, 48, 25, 25, 13, 52, 27, 27, 14, 56, 29, 29, 15, 60, 31, 31, 16, 64, 33, 33, 17, 68, 35, 35, 18, 72, 37, 37, 19, 76, 39, 39, 20
OFFSET
0,1
FORMULA
G.f.: (4+3*x+3*x^2+2*x^3-x^5-x^6-x^7) / ((1-x)*(1+x)*(1+x^2))^2. - Colin Barker, Mar 15 2013
a(n) = 2*a(n-4) - a(n-8). - Colin Barker, Mar 15 2013
MATHEMATICA
F= Table[Abs[Coefficient[ExpandAll[(x -(m+I*Sqrt[2*m+1])/(m+1))*(x -( m-I*Sqrt[2*m+1])/(m+1))], x]], {m, 100}];
Table[{Numerator[F[[n]]], Denominator[F[[n]]]}, {n, 2, 100}]//Flatten
(* Additional programs *)
t= {4, 3, 3, 2, 8, 5, 5, 3}; Do[AppendTo[t, 2*t[[-4]] - t[[-8]]], {100}]; t (* T. D. Noe, Mar 17 2013 *)
LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {4, 3, 3, 2, 8, 5, 5, 3}, 80] (* Harvey P. Dale, Jan 30 2021 *)
PROG
(Magma) I:=[4, 3, 3, 2, 8, 5, 5, 3]; [n le 8 select I[n] else 2*Self(n-4) - Self(n-8): n in [1..80]]; // G. C. Greubel, Jul 21 2023
(SageMath)
@CachedFunction
def a(n): # a = A117691
if (n<8): return (4, 3, 3, 2, 8, 5, 5, 3)[n]
else: return 2*a(n-4) - a(n-8)
[a(n) for n in range(81)] # G. C. Greubel, Jul 21 2023
CROSSREFS
Sequence in context: A117323 A016502 A305743 * A375311 A243564 A358329
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Apr 12 2006
EXTENSIONS
New name from Colin Barker, Mar 17 2013
STATUS
approved