login
A117684
Row sums of A117683.
2
1, 2, 3, 13, 11, 49, 27, 141, 523, 3081, 923, 5509, 1371, 7617, 24391, 84933, 14795, 110329, 20859, 142101, 499843, 1858209, 241211, 2312077, 8417451, 70482153, 251680159, 935093181, 95916299, 1102272481, 131510523, 1270525629, 4572551611, 17189356473
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} A117683(n,k).
MATHEMATICA
f[n_]:= If[PrimeQ[n], 1, n];
cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *)
T[n_, k_]:= T[n, k]= cf[n]/(cf[k]*cf[n-k]);
a[n_]:= a[n]= Sum[T[n, k], {k, n}];
Table[a[n], {n, 40}]
PROG
(Magma)
A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1, n)) >;
[(&+[Binomial(n, k)*A034386(k)*A034386(n-k)/A034386(n): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Jul 21 2023
(SageMath)
@CachedFunction
def A034386(n): return product(nth_prime(j) for j in range(1, 1+prime_pi(n)))
def A117684(n): return sum(binomial(n, k)*A034386(k)*A034386(n-k)/A034386(n) for k in range(1, n+1))
[A117684(n) for n in range(1, 41)] # G. C. Greubel, Jul 21 2023
CROSSREFS
Cf. A117683.
Sequence in context: A046421 A132365 A129671 * A056445 A171483 A100385
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Apr 12 2006
EXTENSIONS
Description simplified, offset corrected by the Assoc. Eds. of the OEIS, Jun 27 2010
STATUS
approved