login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117652
a(n) = floor(n*(n+2)*(n+4)*(n-6)/192).
1
0, -1, -1, -2, -2, -2, 0, 3, 10, 20, 35, 55, 84, 120, 168, 227, 300, 388, 495, 621, 770, 943, 1144, 1374, 1638, 1937, 2275, 2654, 3080, 3553, 4080, 4662, 5304, 6009, 6783, 7628, 8550, 9552, 10640, 11817, 13090, 14462, 15939, 17525, 19228, 21050, 23000, 25081
OFFSET
0,4
COMMENTS
Quasipolynomial with period 16. - Charles R Greathouse IV, Sep 06 2011
LINKS
Index entries for linear recurrences with constant coefficients, signature (4,-5,0,4,0,-4,0,4,0,-4,0,4,0,-4,0,5,-4,1).
FORMULA
a(n) = floor( n*(n+2)*(n+4)*(n-6)/192).
a(n) = 4*a(n-1) - 5*a(n-2) + 4*a(n-4) - 4*a(n-6) + 4*a(n-8) - 4*a(n-10) + 4*a(n-12) - 4*a(n-14) + 5*a(n-16) - 4*a(n-17) + a(n-18).
MATHEMATICA
Table[Floor[n*(n+1)*(n+2)*(n-3)/12], {n, 0, 25, 1/2}]
LinearRecurrence[{4, -5, 0, 4, 0, -4, 0, 4, 0, -4, 0, 4, 0, -4, 0, 5, -4, 1}, {0, -1, -1, -2, -2, -2, 0, 3, 10, 20, 35, 55, 84, 120, 168, 227, 300, 388}, 50] (* Harvey P. Dale, Nov 02 2024 *)
PROG
(Magma) [Floor( n*(n+2)*(n+4)*(n-6)/192): n in [0..50]]; // Vincenzo Librandi, Sep 06 2011
(PARI) a(n)=n*(n+2)*(n+4)*(n-6)\192 \\ Charles R Greathouse IV, Sep 06 2011
(Sage) [floor(n*(n+2)*(n+4)*(n-6)/192) for n in (0..50)] # G. C. Greubel, May 20 2019
CROSSREFS
Sequence in context: A071295 A296062 A214178 * A103223 A091399 A350951
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Apr 11 2006
EXTENSIONS
More precise description, converted to a more regular signed sequence - the Assoc. Eds. of the OEIS, Jun 27 2010
STATUS
approved