login
A116811
Number of permutations of length n which avoid the patterns 1234, 1432, 3214.
1
1, 2, 6, 21, 70, 204, 560, 1617, 4796, 14249, 41939, 122658, 358991, 1053628, 3095381, 9089525, 26674879, 78271099, 229705211, 674214603, 1978919196, 5808153968, 17046573229, 50030848109, 146839772058, 430974323821, 1264905691383, 3712476662089
OFFSET
1,2
LINKS
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 (2017), Table 2 No 13.
Index entries for linear recurrences with constant coefficients, signature (2,1,2,5,14,7,-25,-25,-17,-10,-16,-1).
FORMULA
G.f.: -x*(x^11 +16*x^10 +10*x^9 +17*x^8 +25*x^7 +25*x^6 -7*x^5 -13*x^4 -5*x^3 -x^2 -1) / (x^12 +16*x^11 +10*x^10 +17*x^9 +25*x^8 +25*x^7 -7*x^6 -14*x^5 -5*x^4 -2*x^3 -x^2 -2*x +1). [Rewritten in a more conventional form by Colin Barker, May 26 2015]
PROG
(PARI) Vec(-x*(x^11 +16*x^10 +10*x^9 +17*x^8 +25*x^7 +25*x^6 -7*x^5 -13*x^4 -5*x^3 -x^2 -1) / (x^12 +16*x^11 +10*x^10 +17*x^9 +25*x^8 +25*x^7 -7*x^6 -14*x^5 -5*x^4 -2*x^3 -x^2 -2*x +1) + O(x^100)) \\ Colin Barker, May 26 2015
CROSSREFS
Sequence in context: A116815 A116804 A116832 * A294718 A116794 A294719
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Feb 26 2006
STATUS
approved