login
A116804
Number of permutations of length n which avoid the patterns 1234, 1432, 4231.
0
1, 2, 6, 21, 70, 200, 481, 1004, 1886, 3270, 5325, 8246, 12254, 17596, 24545, 33400, 44486, 58154, 74781, 94770, 118550, 146576, 179329, 217316, 261070, 311150, 368141, 432654, 505326, 586820
OFFSET
1,2
FORMULA
G.f.: A(x) = -{x(5x^8-2x^7-x^6+9x^5+10x^4+x^3+6x^2-3x+1)}/{(x-1)^5}
For n >= 5, a(n) = (13n^4 - 156n^3 + 893n^2 - 2790n + 3840)/12. - Franklin T. Adams-Watters, Sep 16 2006
MAPLE
cn := [1, -4, 7, -4, 6, 9, 9, -1, -2, 5] ;
p := add(cn[i]*x^(i-1), i=1..nops(cn)) ;
q := (1-x)^5 ;
taylor(p/q, x=0, 40) ;
gfun[seriestolist](%) ; # R. J. Mathar, Nov 07 2017
CROSSREFS
Sequence in context: A116813 A116765 A116815 * A116832 A116811 A294718
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Feb 26 2006
STATUS
approved