login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116597
Expansion of theta_3(q) * theta_4(q^4)^2 in powers of q.
5
1, 2, 0, 0, -2, -8, 0, 0, -4, 10, 0, 0, 8, -8, 0, 0, 6, 16, 0, 0, -8, -16, 0, 0, -8, 10, 0, 0, 0, -24, 0, 0, 12, 16, 0, 0, -10, -8, 0, 0, -8, 32, 0, 0, 24, -24, 0, 0, 8, 18, 0, 0, -8, -24, 0, 0, -16, 16, 0, 0, 0, -24, 0, 0, 6, 32, 0, 0, -16, -32, 0, 0, -12, 16, 0, 0, 24, -32, 0, 0, 24, 34, 0, 0, -16, -16, 0, 0, -8, 48
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(q) * phi(-q^4)^2 in powers of q where phi() is a Ramanujan theta function.
Expansion of eta(q^2)^5 * (eta(q^4) / (eta(q) * eta(q^8)))^2 in powers of q.
Euler transform of period 8 sequence [ 2, -3, 2, -5, 2, -3, 2, -3, ...].
G.f.: theta_3(q) * theta_4(q^4)^2 = Product_{k>0} (1 - x^(2*k))^3 *((1 + x^k) / (1 + x^(4*k)))^2.
a(4*n + 2) = a(4*n + 3) = 0. a(n) = A080963(4*n). a(4*n) = A212885(n). a(4*n + 1) = (-1)^n * A005876(n).
a(3*n + 1) = 2 * A257536(n). - Michael Somos, Apr 28 2015
EXAMPLE
G.f. = 1 + 2*q - 2*q^4 - 8*q^5 - 4*q^8 + 10*q^9 + 8*q^12 - 8*q^13 + 6*q^16 + 16*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^4]^2, {q, 0, n}]; (* Michael Somos, Apr 28 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * (eta(x^4 + A) / (eta(x + A) * eta(x^8 + A)))^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 18 2006
STATUS
approved