login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116503
Sum of the areas of the Durfee squares of all partitions of n.
3
1, 2, 3, 8, 13, 26, 39, 64, 98, 148, 216, 322, 455, 648, 904, 1258, 1711, 2336, 3128, 4198, 5548, 7330, 9569, 12496, 16146, 20836, 26674, 34098, 43273, 54846, 69072, 86848, 108627, 135612, 168527, 209066, 258271, 318482, 391321, 479946, 586709
OFFSET
1,2
COMMENTS
a(n) = sum(k^2*A115994(n,k), k=1..floor(sqrt(n))).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
FORMULA
G.f.: sum(k^2*z^(k^2)/product((1-z^j)^2, j=1..k), k=1..infinity).
a(n) ~ sqrt(3) * (log(2))^2 * exp(Pi*sqrt(2*n/3)) / (2*Pi^2). - Vaclav Kotesovec, Jan 03 2019
EXAMPLE
a(4) = 8 because the partitions of 4, namely [4], [3,1], [2,2], [2,1,1] and [1,1,1,1], have Durfee squares of sizes 1,1,2,1 and 1, respectively and 1^2+1^2+2^2+1^2+1^2=8.
MAPLE
g:=sum(k^2*z^(k^2)/product((1-z^j)^2, j=1..k), k=1..10): gser:=series(g, z=0, 52): seq(coeff(gser, z^n), n=1..45);
# second Maple program:
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> add(k^2*add(b(m, k)*b(n-k^2-m, k),
m=0..n-k^2), k=1..floor(sqrt(n))):
seq(a(n), n=1..40); # Alois P. Heinz, Apr 09 2012
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum [k^2*Sum[b[m, k]*b[n - k^2 - m, k], {m, 0, n - k^2}], {k, 1, Sqrt[n]}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A213046 A262021 A221181 * A291589 A105204 A352603
KEYWORD
easy,nonn
AUTHOR
STATUS
approved