Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 08 2022 08:45:24
%S 1,0,3,1,10,6,36,28,135,121,517,507,2003,2093,7815,8569,30634,34902,
%T 120480,141664,475002,573574,1876294,2318010,7422676,9354540,29400192,
%U 37708672,116567356,151868100,462561572,611180252,1836843591,2458123705
%N Diagonal sums of the Riordan array A116382.
%H G. C. Greubel, <a href="/A116384/b116384.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} (-1)^(n-k-j)*C(n-k,j) * Sum_{i=0..j} C(j,i-k)C(i,j-i).
%t T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[n, j]*Sum[Binomial[j, i-k]* Binomial[i, j-i], {i, 0, j}], {j, 0, n}]; Table[Sum[T[n-k, k], {k, 0, Floor[n/2]}], {n, 0, 40}] (* _G. C. Greubel_, May 22 2019 *)
%o (PARI) {T(n,k) = sum(j=0,n, (-1)^(n-j)*binomial(n,j)*sum(m=0,j, binomial(j,m-k)*binomial(m,j-m) ))};vector(40, n, n--; sum(k=0, floor(n/2), T(n-k,k)) ) \\ _G. C. Greubel_, May 22 2019
%o (Magma)
%o T:= func< n,k | (&+[(-1)^(n-j)*Binomial(n,j)*(&+[Binomial(j,m-k)* Binomial(m,j-m): m in [0..j]]): j in [0..n]]) >;
%o [(&+[T(n-k,k): k in [0..Floor(n/2)]]): n in [0..40]];
%o (Sage)
%o def T(n, k): return sum((-1)^(n-j)*binomial(n,j)*sum(binomial(j,m-k)*binomial(m,j-m) for m in (0..j)) for j in (0..n))
%o [ sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..40)] # _G. C. Greubel_, May 22 2019
%o (GAP) List([0..40], n-> Sum([0..n], k-> Sum([0..n-k], j-> (-1)^(n-k-j)*Binomial(n-k,j)*Sum([0..j], m-> Binomial(j,m-k)*Binomial(m,j-m) )))) # _G. C. Greubel_, May 22 2019
%K easy,nonn
%O 0,3
%A _Paul Barry_, Feb 12 2006