login
A116370
Number of distinct prime factors of P(L(n)) where L(n) is the Lucas number and P(n) is the unrestricted partition number.
1
1, 1, 2, 2, 3, 3, 4, 2, 2, 3, 4, 5, 4, 4, 5, 5, 8, 10, 6, 7
OFFSET
2,3
EXAMPLE
P(L(14)) = 37285884524590579748861394570 = 2 * 3^2 * 5 * 414287605828784219431793273, so the 13th number in the sequence is 4.
MAPLE
A000041 := proc(n) combinat[numbpart](n) ; end: A000204 := proc(n) option remember ; if n = 1 then 1; elif n = 2 then 3 ; else A000204(n-1)+A000204(n-2) ; fi ; end: A116370 := proc(n) local fcts ; fcts := A000041(A000204(n)) ; nops(numtheory[factorset](fcts)) ; end: for n from 2 to 20 do print(A116370(n)) ; od: # R. J. Mathar, Jan 30 2008
MATHEMATICA
PrimeNu[PartitionsP[LucasL[Range[2, 21]]]] (* Harvey P. Dale, Apr 07 2018 *)
CROSSREFS
Sequence in context: A367315 A085561 A260651 * A378160 A261018 A339970
KEYWORD
more,nonn
AUTHOR
Parthasarathy Nambi, Mar 15 2006
EXTENSIONS
2 more terms from R. J. Mathar, Jan 30 2008
a(17)-a(21) from Donovan Johnson, Aug 31 2008
STATUS
approved