login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116327
k times k+8 gives the concatenation of two numbers m and m+5.
5
79, 35475530, 41357883, 58642110, 64524463, 3317813164402425001808, 3762581663871761671881, 4019782237714250566387, 4464550737183587236460, 5535449262816412763533, 5980217762285749433606, 6237418336128238328112
OFFSET
1,1
EXAMPLE
64524463 * 64524471 = 41634068//41634073, where // denotes concatenation, so 64524463 is a term.
PROG
(Python)
from itertools import count, islice
from sympy import sqrt_mod
def A116327_gen(): # generator of terms
for j in count(0):
b = 10**j
a = b*10+1
for k in sorted(sqrt_mod(21, a, all_roots=True)):
if a*(b-5) <= k**2-21 < a*(a-6) and k>4:
yield k-4
A116327_list = list(islice(A116327_gen(), 20)) # Chai Wah Wu, Feb 21 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, Feb 06 2006
STATUS
approved