login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116186 Decimal expansion of real part of i^(i^i), that is, Re(i^(i^i)). 3
9, 4, 7, 1, 5, 8, 9, 9, 8, 0, 7, 2, 3, 7, 8, 3, 8, 0, 6, 5, 3, 4, 7, 5, 3, 5, 2, 0, 1, 8, 1, 9, 3, 3, 3, 3, 5, 0, 3, 9, 0, 6, 1, 3, 3, 9, 0, 3, 1, 4, 9, 3, 6, 3, 6, 7, 1, 3, 6, 8, 1, 1, 7, 9, 4, 4, 6, 9, 2, 9, 2, 7, 9, 3, 0, 0, 4, 8, 8, 0, 8, 4, 5, 2, 6, 2, 6, 2, 6, 8, 4, 6, 2, 6, 4, 9, 0, 2, 2, 3, 7, 4, 9, 5, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

If Schanuel's Conjecture is true, then i^i^i is transcendental (see Marques and Sondow 2010, p. 79).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

S. Finch, Errata and Addenda to Mathematical Constants, Jun 23 2012, Section 1.1

Steven R. Finch, Errata and Addenda to Mathematical Constants, January 22, 2016. [Cached copy, with permission of the author]

D. Marques and J. Sondow, Schanuel's conjecture and algebraic powers z^w and w^z with z and w transcendental,  East-West J. Math., 12 (2010), 75-84.

Wikipedia, Schanuel's conjecture

EXAMPLE

i^(i^i) = 0.947158998072378380653475352018 + 0.320764449979308534660116845875 i.

MATHEMATICA

RealDigits[ Re[I^I^I], 10, 100] // First

PROG

(PARI) real(I^I^I) \\ Charles R Greathouse IV, May 15 2013

(MAGMA) C<I> := ComplexField(100);  Real(I^I^I) // G. C. Greubel, May 11 2019

(Sage) numerical_approx((i^i^i).real(), digits=100) # G. C. Greubel, May 11 2019

CROSSREFS

Cf. A049006, A116191.

Sequence in context: A267315 A247412 A154397 * A011113 A021841 A176515

Adjacent sequences:  A116183 A116184 A116185 * A116187 A116188 A116189

KEYWORD

nonn,cons

AUTHOR

Peter C. Heinig (algorithms(AT)gmx.de), Apr 15 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 07:23 EDT 2019. Contains 325216 sequences. (Running on oeis4.)