Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jan 27 2024 07:05:18
%S 1,12,120,1120,10080,88704,768768,6589440,56010240,472975360,
%T 3972993024,33228668928,276905574400,2300446310400,19060840857600,
%U 157569617756160,1299949346488320,10705465206374400,88022713919078400,722712809019801600,5926245033962373120
%N Expansion of (1-8*x)^(-3/2).
%H Youngja Park and SeungKyung Park, <a href="http://dx.doi.org/10.1016/j.disc.2016.04.024">Enumeration of generalized lattice paths by string types, peaks, and ascents</a>, Discrete Mathematics 339.11 (2016): 2652-2659.
%F G.f.: 1/((1-8*x)*sqrt(1-8*x)) = 1F0(3/2;;8x).
%F a(n) = Jacobi_P(n,1/2,1/2,1)*8^n.
%F a(n) = 2^n*(2*n+1)*binomial(2*n,n).
%F a(n) = (2*n+1)*A059304(n).
%F a(n) = 2^n*A002457(n).
%F D-finite with recurrence: n*a(n) -4*(2*n+1)*a(n-1) =0. - _R. J. Mathar_, Nov 14 2011
%F G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 8*x*(2*k+3)/(8*x*(2*k+3) + 2*(k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 06 2013
%F Sum_{n>=0} (-1)^n/a(n) = 4/3*log(2). - _Daniel Suteu_, Oct 31 2017
%F Sum_{n>=0} 1/a(n) = 8*arcsin(1/sqrt(8))/sqrt(7). - _Amiram Eldar_, Jan 27 2024
%p a:= n-> add((binomial(2*n,n))*2^(n-2), j=1..n): seq(a(n), n=1..20); # _Zerinvary Lajos_, May 03 2007
%t CoefficientList[Series[(1-8x)^-(3/2),{x,0,30}],x] (* _Harvey P. Dale_, Jul 13 2012 *)
%Y Cf. A002457, A059304.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Feb 02 2006