login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115902
Expansion of (1-8*x)^(-3/2).
0
1, 12, 120, 1120, 10080, 88704, 768768, 6589440, 56010240, 472975360, 3972993024, 33228668928, 276905574400, 2300446310400, 19060840857600, 157569617756160, 1299949346488320, 10705465206374400, 88022713919078400, 722712809019801600, 5926245033962373120
OFFSET
0,2
LINKS
Youngja Park and SeungKyung Park, Enumeration of generalized lattice paths by string types, peaks, and ascents, Discrete Mathematics 339.11 (2016): 2652-2659.
FORMULA
G.f.: 1/((1-8*x)*sqrt(1-8*x)) = 1F0(3/2;;8x).
a(n) = Jacobi_P(n,1/2,1/2,1)*8^n.
a(n) = 2^n*(2*n+1)*binomial(2*n,n).
a(n) = (2*n+1)*A059304(n).
a(n) = 2^n*A002457(n).
D-finite with recurrence: n*a(n) -4*(2*n+1)*a(n-1) =0. - R. J. Mathar, Nov 14 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 8*x*(2*k+3)/(8*x*(2*k+3) + 2*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
Sum_{n>=0} (-1)^n/a(n) = 4/3*log(2). - Daniel Suteu, Oct 31 2017
Sum_{n>=0} 1/a(n) = 8*arcsin(1/sqrt(8))/sqrt(7). - Amiram Eldar, Jan 27 2024
MAPLE
a:= n-> add((binomial(2*n, n))*2^(n-2), j=1..n): seq(a(n), n=1..20); # Zerinvary Lajos, May 03 2007
MATHEMATICA
CoefficientList[Series[(1-8x)^-(3/2), {x, 0, 30}], x] (* Harvey P. Dale, Jul 13 2012 *)
CROSSREFS
Sequence in context: A012273 A008465 A291391 * A277491 A004332 A129329
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 02 2006
STATUS
approved