login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115600
a(n) = numerator of b(n), where b(1) = 1, b(n+1) = Sum_{k=1..n} b(k)^((-1)^(n-k)).
4
1, 1, 2, 4, 13, 43, 905, 15790, 92494147, 47283340087, 8845558976879378539, 2707131569835749037213946965347, 2980435288285565929467276114849756995199455683357
OFFSET
1,3
COMMENTS
Next term has 80 digits and is too long to be shown. - Emeric Deutsch, Apr 30 2006
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..19
EXAMPLE
{b(n)} begins 1, 1, 2, 4, 13/2, 43/4, ...
So b(7) = 1 + 1 + 1/2 + 4 + 2/13 + 43/4 = 905/52 and therefore a(7) = 905.
MAPLE
b[1]:=1: for n from 1 to 14 do b[n+1]:=sum(b[k]^((-1)^(n-k)), k=1..n) od: seq(numer(b[n]), n=1..14); # Emeric Deutsch, Apr 30 2006
MATHEMATICA
b[n_] := b[n] = If[n == 1, 1, Sum[b[k]^((-1)^(n - k - 1)), {k, n - 1}]]; Array[Numerator@ b@ # &, 13] (* Michael De Vlieger, Sep 30 2017 *)
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Mar 13 2006
EXTENSIONS
More terms from Emeric Deutsch, Apr 30 2006
STATUS
approved